Saturday, October 10, 2020

Brussels Choice



This post is inspired by my friends who are driven by the Collatz Conjecture (see prior posts: HOTPO, additional thoughts). The  Numberphile Podcast has a short video introducing the Brussels Choice, a problem of sequences. The guest on this episode is the founder of the OEIS (the On-Line Encyclopedia of Integer Sequences), Neil Sloane.

Like the Collatz Conjecture, one starts with any integer and follows simple rules to convert the number to 1 (or other numbers) in a series of steps. Unlike the Collatz Conjecture, not all numbers can be converted to 1. Numbers ending in 5 and 0 cannot be converted to 1 but can be converted to 5.

Rules:

  • Any digit or sequence of digits within the number that ends with an even number can be doubled or halved. The other digits are unchanged.
  • Any digit or sequence of digits within the number that ends even an odd number can only be doubled. The other digits are unchanged.

Example - start with 6113

Double the 3, the remaining digits are unchanged: 6116

Divide 16 by 2: 618

Divide 8 by 2: 614

Divide 4 by 2: 612

Divide 2 by 2: 611

Divide 6 by 2: 311

Double the final 1: 312

Divide 312 by 2: 156

Double 1: 256 (a power of 2)

Divide 256 by 2 and repeat 7 more times to reach 1.

Example - start with 90 (numbers ending with a 0 or 5 can be converted to 5)

Double 9: 180

Divide 8 by 2: 140

Double 14: 280

Double 28: 560

Double 56: 1120

Divide 12 by 2: 160

Divide 16 by 2: 80

Divide 8 by 2: 40

Divide 4 by 2: 20

Divide 2 by 2: 10

Divide 10 by 2: 5


The site Code Golf, has a challenge to write the code to determine if two numbers are connected by the Brussels Choice.

No comments:

Post a Comment

1679 - One important message sent from Earth 31 years ago

In 1974 an interstellar radio transmission was broadcast to the  globular cluster   Messier 13   from the Arecibo radio telescope in Puerto ...

Popular in last 30 days