Wednesday, April 30, 2025

A383135 Contribution to the OEIS (supporting a juggler sequence)

 

A383135
a(n) = number of iterations that n requires to reach 1 under the x -> A380891(x) map, or -1 if it never does.
0
0, 1, 2, 1, 3, 1, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 6, 2, 4, 2, 6, 2, 13, 2, 13, 2, 8, 3, 8, 3, 10, 3, 10, 3, 3, 3, 10, 3, 5, 3, 10, 3, 5, 3, 5, 3, 6, 3, 5, 3, 5, 3, 17, 3, 5, 3, 5, 3, 17, 3, 3, 3, 3, 2, 12, 2, 3, 2, 5, 2, 5, 2, 12, 2, 3, 2, 7, 2, 3, 2, 7, 2, 7, 2
OFFSET
1,3
COMMENTS
A380891(x) map is If x mod 2 = 0 then a(x) = floor(x^(1/3)) else a(x) = floor(x^(4/3)).
MATHEMATICA
fj[n_]:=If[Mod[n, 2]==0, Floor[Surd[n, 3]], Floor[n^(4/3)]]; a383135[n_]:= Length[ NestWhileList[fj, n, # != 1 &]] - 1; Array[ a383135, 84]
PROG
(Python)
import sys
import gmpy2
sys.set_int_max_str_digits(0)
def floorJuggler(n) :
a=n
count=0
while (a > 1) :
b=0
if (a%2 == 0) :
b1=gmpy2.iroot(a, 3)
b=b1[0]
count=count+1
else :
b1=gmpy2.iroot(a**4, 3)
b=b1[0]
count=count+1
a=b
return count
for i in range (1, 100) :
print (i, floorJuggler(i))
CROSSREFS
KEYWORD
nonn,new
AUTHOR
STATUS
approved

Wednesday, April 16, 2025

A380943 Contribution to the OEIS (Saint Patrick Primes)

 A380943

Primes written in decimal representation by the concatenation of primes p and q such that the concatenation of q and p also forms a prime.
+40
0
37, 73, 113, 173, 197, 311, 313, 317, 331, 337, 359, 367, 373, 593, 617, 673, 719, 733, 761, 797, 977, 1093, 1097, 1123, 1277, 1319, 1361, 1373, 1783, 1913, 1931, 1979, 1997, 2293, 2297, 2311, 2347, 2389, 2713, 2837, 2971, 3109, 3119, 3137, 3191, 3229, 3271
OFFSET
1,1
COMMENTS
Member primes could be named Saint Patrick primes because the date of Saint Patrick's Day, March 17 (3/17), produces the terms 173 and 317.
LINKS
Michael De Vlieger, Plot a(n) = p<>q at (x,y) = (pi(p), pi(q)) showing all terms with pi(p) <= 40 and pi(q) <= 40, labeling p in red and q in blue.
Michael De Vlieger, Plot a(n) = p<>q at (x,y) = (pi(p), pi(q)) showing all terms with pi(p) <= 2000 and pi(q) <= 2000.
EXAMPLE
Primes 173 and 317 are members because they are formed by the concatenation of 17 & 3 and 3 & 17, respectively.
While the concatenation of 13 and 7 forms the prime 137, it is not a member because the concatenation of 7 and 13 is 713, which is not prime.
MATHEMATICA
lim=3300; plim=Max[FromDigits[Rest[IntegerDigits[lim]]], FromDigits[Drop[IntegerDigits[lim], -1]]]; p=Prime[Range[PrimePi[plim]]]; p2=Subsets[p, {2}]; fp[{a_, b_}]:=FromDigits[Join[IntegerDigits[a], IntegerDigits[b]]]; rfp[{a_, b_}]:=FromDigits[Join[IntegerDigits[b], IntegerDigits[a]]]; pabba=Select[p2, PrimeQ[fp[#]]&&PrimeQ[rfp[#]]&]; pp1=fp/@pabba; pp2=rfp/@pabba; Select[Union[Join[pp1, pp2]], #<=lim&]
PROG
(Python)
from sympy import isprime
def ok(n):
if not isprime(n): return False
s = str(n)
return any(s[i]!='0' and isprime(int(s[:i])) and isprime(int(s[i:])) and isprime(int(s[i:]+s[:i])) for i in range(1, len(s)))
print([k for k in range(3300) if ok(k)]) # Michael S. Branicky, Apr 05 2025
CROSSREFS
Subsequence of A019549 and A105184.
Cf. A133187.
KEYWORD
nonn,base,new
AUTHOR
James C. McMahon, Apr 03 2025

Monday, April 14, 2025

Smart Crows and Geometry

 

(Image: https://www.iconfinder.com/SatawatIcon)

Crows are recognized as very intelligent. Listen to this from NPR: https://www.npr.org/2025/04/11/nx-s1-5355849/a-new-study-finds-crows-can-recognize-geometric-shapes


Also summarized in ScienceAdvanceshttps://www.science.org/doi/10.1126/sciadv.adt3718


1679 - One important message sent from Earth 31 years ago

In 1974 an interstellar radio transmission was broadcast to the  globular cluster   Messier 13   from the Arecibo radio telescope in Puerto ...

Popular in last 30 days