A383135
a(n) = number of iterations that n requires to reach 1 under the x -> A380891(x) map, or -1 if it never does.
0
0, 1, 2, 1, 3, 1, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 6, 2, 4, 2, 6, 2, 13, 2, 13, 2, 8, 3, 8, 3, 10, 3, 10, 3, 3, 3, 10, 3, 5, 3, 10, 3, 5, 3, 5, 3, 6, 3, 5, 3, 5, 3, 17, 3, 5, 3, 5, 3, 17, 3, 3, 3, 3, 2, 12, 2, 3, 2, 5, 2, 5, 2, 12, 2, 3, 2, 7, 2, 3, 2, 7, 2, 7, 2
OFFSET
1,3
COMMENTS
A380891(x) map is If x mod 2 = 0 then a(x) = floor(x^(1/3)) else a(x) = floor(x^(4/3)).
LINKS
James C. McMahon, Table of n, a(n) for n = 1..10000
Vikram Prasad and M. A. Prasad, Estimates of the maximum excursion constant and stopping constant of juggler-like sequences, ResearchGate, 2025.
MATHEMATICA
fj[n_]:=If[Mod[n, 2]==0, Floor[Surd[n, 3]], Floor[n^(4/3)]]; a383135[n_]:= Length[ NestWhileList[fj, n, # != 1 &]] - 1; Array[ a383135, 84]
PROG
(Python)
import sys
import gmpy2
sys.set_int_max_str_digits(0)
def floorJuggler(n) :
a=n
count=0
while (a > 1) :
b=0
if (a%2 == 0) :
b1=gmpy2.iroot(a, 3)
b=b1[0]
count=count+1
else :
b1=gmpy2.iroot(a**4, 3)
b=b1[0]
count=count+1
a=b
return count
for i in range (1, 100) :
print (i, floorJuggler(i))
CROSSREFS
KEYWORD
nonn,new
AUTHOR
James C. McMahon and Vikram Prasad, Apr 17 2025
STATUS
approved
No comments:
Post a Comment