A381246
Largest value in trajectory of n under the juggler map of A380891.
0
1, 2, 4, 4, 8, 6, 30, 8, 18, 10, 24, 12, 30, 14, 36, 16, 150, 18, 50, 20, 1320, 22, 43366048, 24, 41678, 26, 350, 28, 41678, 30, 234421146, 32, 2438232, 34, 114, 36, 5184, 38, 132, 40, 124026, 42, 150, 44, 160, 46, 934, 48, 1008, 50, 1084, 52, 43366048, 54, 1240
OFFSET
1,2
COMMENTS
A380891(x) map is If x mod 2 = 0 then a(x) = floor(x^(1/3)) else a(x) = floor(x^(4/3)).
LINKS
James C. McMahon, Table of n, a(n) for n = 1..10000
Vikram Prasad and M. A. Prasad, Estimates of the maximum excursion constant and stopping constant of juggler-like sequences, ResearchGate, 2025.
MATHEMATICA
fj[n_]:=If[Mod[n, 2]==0, Floor[Surd[n, 3]], Floor[n^(4/3)]]; a381246[n_]:=Max[Delete[FixedPointList[fj, n], -1]]; Array[a381246, 55]
PROG
(Python)
import sys
import gmpy2
sys.set_int_max_str_digits(0)
def floorJuggler(n):
a=n
max=n
while a > 1:
b=0
if a%2 == 0:
b1=gmpy2.iroot(a, 3)
b=b1[0]
else:
b1=gmpy2.iroot(a**4, 3)
b=b1[0]
a=b
if a > max:
max = a
return max
maxcount=0
for i in range (1, 100):
print (i, floorJuggler(i))
CROSSREFS
KEYWORD
nonn,new
AUTHOR
James C. McMahon and Vikram Prasad, Apr 17 2025
STATUS
approved
No comments:
Post a Comment