Thursday, May 9, 2024

A368805 Contribution to the OEIS

 

A368805Primes whose digits are prime in both base 9 and base 10.0
2, 3, 5, 7, 23, 227, 277, 2777, 5333, 5573, 23537, 23753, 25373, 225527, 25737557, 27775337, 27775357, 35275777, 35277233, 37333757, 227773753, 227775533, 232372577, 233752577, 252777737, 337777277, 25322233723, 25322237323, 25322237357, 25322237723, 25322327753, 25322327777, 25322532523 (listgraphrefslistenhistoryedittextinternal format)
OFFSET
1,1
COMMENTS
Subsequence of A019546.
LINKS
EXAMPLE
2777 is in this sequence because it is prime, all its digits are prime and 2777 in base 9 is 3725, whose digits are all prime.
MATHEMATICA
Select[Range[2.1*10^7], PrimeQ[#]&&AllTrue[IntegerDigits[#], PrimeQ]&&AllTrue[IntegerDigits[#, 9], PrimeQ]&] (* or *)
seq1[dignum_, b_] := Module[{s = {}}, Do[s = Join[s, Select[FromDigits[#, b] & /@ Tuples[{2, 3, 5, 7}, k], PrimeQ]], {k, 1, dignum}]; s]; seq[maxdig9_] := Select[Intersection[seq1[maxdig9, 9], seq1[maxdig9, 10]], # <= 9^maxdig9 &]; seq[11] (* Amiram Eldar, Jan 06 2024 *)
PROG
(Python)
from gmpy2 import digits, is_prime
from itertools import count, islice, product
def bgen():
yield from [2, 3, 5, 7]
for d in count(2):
for f in product("2357", repeat=d-1):
for last in "37":
yield int("".join(f)+last)
def agen(): yield from (t for t in bgen() if is_prime(t) and set(digits(t, 9)) <= set("2357"))
print(list(islice(agen(), 33))) # Michael S. Branicky, Jan 07 2024
CROSSREFS
Sequence in context: A343834 A070029 A360497 * A262339 A110094 A088054
KEYWORD
nonn,base
AUTHOR
James C. McMahon, Jan 06 2024
STATUS
approved

No comments:

Post a Comment

An Open Message to the Blog's Fans in Singapore

(Image:  Free 12 singapore icons - Iconfinder ) This past week, more views of this blog were made from Singapore than other country. To ackn...

Popular in last 30 days