| 0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 40, 41, 42, 43, 50, 51, 52, 53, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 140, 141, 142, 143, 150, 151, 152, 153, 200, 201, 202, 203, 210, 211, 212, 213 (list; graph; refs; listen; history; edit; text; internal format) |
|
| OFFSET | 0,3 | | COMMENTS | Compositorial base is a mixed-radix representation using the composite numbers (A002808) from least to most significant. Places reading from right have values (1, 4, 24, 192, ...) = compositorial numbers (A036691). a(n) = concatenation of decimal digits of n in compositorial base. This concatenated representation is unsatisfactory for large n (above 172799), when coefficients of 10 or greater start to appear. | | LINKS | | | EXAMPLE | a(35)=123; 35 = 1*24 + 2*4 + 3*1. | | MATHEMATICA | Table[FromDigits@ IntegerDigits[n, MixedRadix[Reverse@ ResourceFunction["Composite"]@ Range@ 8]], {n, 0, 55}] | | CROSSREFS | | | KEYWORD | nonn,base,less | | AUTHOR | | | STATUS | approved |
|
No comments:
Post a Comment